The Grand Challenge in Flight Control

Ray Montgomery & Mike Scott
Dynamics and Control Branch
NASA Langley Research Center

May 6, 1998

Best Possible Control

Following Physical Damage During Flight

Examples exist but,

Is the technology here or imminent?

System Requirements

- State of System Access from aero/control viewpoint
 - What control devices are still functional?
 - What is the existing surface geometry for the vehicle?
- Broadcast Alert Automatic alert of status and need
- Mission Plan Develop/modify in light of situation
 - What is best emergency mission from existing options?
 - Landing, ditching options location?
- Redesign control system to reflect mission selected
- Update Continually as mission evolves

Examining Approaches that Promise High Adapatbility

- Adaptive Control
 - May be good for highly structured cases but, past experience is disappointing.
- Neural-Networks
 - Since there is no tie to physics of process, for reasonable behavior, not luck, the system must have seen a like event before, either in real or simulated situations, and be trained to respond properly.
- Physics-Based Schemes
 - Requires adaquate sensors and control devices for implementation
 - Current progress in computer technology offers hope of

Incorporating CFD into flight control systems

Available CFD theories

Viscous, compressible flow

- called Navier-Stokes theory Most complex
 Invicid, compressible theory
 - called Euler theory Still complex but needed for supersonic and transonic flow cases

Invicid, incompressible theory -

- called potential theory for fluid flow
- can be used for high subsonic with compressibility corrections added
- can be used in conjunction with a boundary layer theory (BLT) to deal with real flowphenonema

Theory of choice

Modelling with Potential Flow

Fundamental Relations:

- Continuity Equation -> Potential Equation
- Momentum -> Bernoulli Equation for pressure distributions
- Doublet distributions over wakes -> produce circulation driven by Kutta conditions
- Modelling separation point and bubble generates *effective* surfaces to define potential flow regions

Synopsis of Potential Theory

- Conservation of mass is fundamental equation, = 0
- V = grad() in (x,y,z) space where V is the velocity of a particle at (x,y,z) and is the velocity potential at (x,y,z)
- Requires no vorticity in flow regions considered
- To solve:
 - Green's formula -> Need only grid the near field boundaries -aircraft surfaces (with separation bubbles) and wakes
 - Panel methods well developed which incorporate far field boundary conditions analytically.
 - Time varying flow results from separation dynamics and deformation of the boundaries, e.g. control surface motions

Synopsis of Potential Theory

-- Time Varying with Conservative Body Forces --

Satisfy potential equation at each in stant of time as well as new Bernoulli equation to define pressures:

$$\frac{\mathbf{w}^2}{t} + \frac{\mathbf{w}^2}{2} + \frac{p}{2} - U = f(t)$$

w here:

- t is time
- \mathbf{p} is pres su re at (x, y, z)
- is fluid d ensity at (x, y, z)
- U is the body force potential, usually $-\mathbf{g} \cdot \mathbf{z}$
- **f** ~ usually zero

Long Range Plan

- Refine DCB core competency in CFD
 - 2 D Panel code -> basic potential method with boundary layer
 - 3 D code for implementation
- Select target vehicle Sensor/actuator driven system
 - Need on-line surface grid generation and pressures
 - J. Foster's RPV, DARPA's X36 experiment, or other
- Architecture incorporating CFD in a flight control system
 - Study ability to predict time horizon, correlatablilty
 - Develop prediction, estimation, system ID for on-line tuning
 - Control law studies, design, integration
- Simulation and Fail-Safe Flight Demonstration
 - recover from failure in small target region of vehicle e.g. add
 vertical tail to tailless design and blow off other concepts possible.

Kalman Estimator for Real-Time Flow Control

Potential Flow Model

Fail-Safe Flight Demonstration - Blended-Wing Model or X36 -

Now, Here's Mike#@\$@%!!

(I'll try to be quiet.)